Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 827: 154221, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35245551

RESUMO

BACKGROUND: Antibiotic resistance conceded as a global concern is a phenomenon that emerged from the bacterial response to the extensive utilization of antimicrobials. The expansion of resistance determinants through horizontal transfer is linked with mobile genetic elements (MGEs) like transposons, insertion sequences, and integrons. Heavy metals also create consequential health hazards. Metal resistance gene in alliance with antibiotic resistance genes (ARGs) and MGEs is assisting bacteria to attain exalted quantity of resistance. METHODOLOGY: The present work was carried out to study ARGs blaCTX-M, AmpC, qnrS, MGEs like ISecp1, TN3, TN21, and Int I by performing PCR and sequencing from Wular and Dal lakes of Kashmir; India. The genetic environment analysis of blaCTX-M-15 was carried out using PCR amplification, and sequencing approach followed by in-silico docking and mutational studies. Co-occurrence of ARGs and HMRGs was determined. Plasmid typing was done using PCR-based replicon typing (PBRT) and conjugation assay was also performed. RESULTS: Out of 201 isolates attained from 16 locations, 33 were ESBLs producers. 30 ESBL displaying isolates were perceived positive for CTX-M gene, followed by AmpC (17), qnrS (13), ISecp1 (15), TN3 (11), TN21 (11), Int I (18), and SulI (14). The genetic environment of blaCTX-M-15 was observed as (ISEcp1-blaCTX-M-15-orf477), classical promoter-10 TACAAT and -35 TTGAA was found at the 3' region. The 3D structure of CTX-M-15 and ISEcp1 was generated and CTX-M-15-ISEcp1 (R299L) docking and mutation showed a reduction in hydrogen bonds. Co-occurrence of antibiotics and HMRGs (mer, sil, and ars) was found in 18, 14, and 8 isolates. PBRT analysis showed the presence of Inc. groups- B/O, F, I1, HI1, FIA, HI2, N, FIB, L/M. Molecular analysis of transconjugants showed the successful transfer of ARGs, MGEs, and HMRGs in the E. coli J53 AZR strain. CONCLUSION: This study highlights the occurrence of ESBL producing bacteria in the aquatic environment of Kashmir India that can serve as a reservoir of ARGs. It also discussed the molecular mechanisms of MGEs which can help in containing the spread of antibiotic resistance.


Assuntos
Escherichia coli , Lagos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Integrons , Plasmídeos , beta-Lactamases/genética
2.
Pharmaceutics ; 14(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35214028

RESUMO

Colistin, a polycationic antimicrobial peptide, is one of the last-resort antibiotics for treating infections caused by carbapenem-resistant Gram-negative bacteria. The antibacterial activity of colistin occurs through electrostatic interaction between the polycationic peptide group of colistin and the negatively charged phosphate groups of lipid A membrane. This study investigated the interaction of colistin with the outer membrane and surface constituents of resistant and susceptible strains of Escherichia coli and Aeromonas veronii harboring mcr-1 resistance gene. Bacterial membrane and lipopolysaccharide used in this study were isolated from susceptible as well as colistin-resistant strains of E. coli and A. veronii. Interaction of colistin with the bacterial surface was studied by deoxycholate and lysozyme sensitivity test, N-phenyl-1-naphthylamine (NPN) uptake assay, Atomic force microscopy (AFM), Zeta potential measurements and 1H NMR. The binding affinity of colistin was found to be lower with outer membrane from resistant strains in comparison with the susceptible strains. Colistin exposure enhances the outer membrane permeability of the susceptible strains to deoxycholate and lysozyme. However, on the other hand, colistin dose of 256 µg/mL did not permeabilize the outer membrane of resistant bacteria. The NPN permeability in resistant strains was greater in comparison with susceptible strains. Atomic force microscopy images depicted smooth, featherless and deformed membranes in treated susceptible cells. Contrary to the above, resistant treated cells displayed surface roughness topography even at 256 µg/mL colistin concentration. Surface charge alterations were confirmed by Zeta potential measurements as a function of the growth phase. Mid-logarithmic phase susceptible strains showed a greater negative charge than resistant strains upon exposure to colistin. However, there was no statistical variation in the Zeta potential measurements between resistant and susceptible strains at the stationary phase. NMR analysis revealed line broadening in susceptible strains with increasing colistin: LPS aggregates mass ratio. Moreover, resistant strains did not show line broadening for the outer membrane, even at the highest mass ratio. The findings of this study suggest that the resistant strains of E. coli and A. veronii can block the electrostatic contact between the cationic peptide and anionic lipid A component that drives the first phase of colistin action, thereby preventing hydrophobically driven second-tier action of colistin on the outer lipopolysaccharide layer.

3.
Front Med (Lausanne) ; 8: 677720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34476235

RESUMO

Colistin regained global interest as a consequence of the rising prevalence of multidrug-resistant Gram-negative Enterobacteriaceae. In parallel, colistin-resistant bacteria emerged in response to the unregulated use of this antibiotic. However, some Gram-negative species are intrinsically resistant to colistin activity, such as Neisseria meningitides, Burkholderia species, and Proteus mirabilis. Most identified colistin resistance usually involves modulation of lipid A that decreases or removes early charge-based interaction with colistin through up-regulation of multistep capsular polysaccharide expression. The membrane modifications occur by the addition of cationic phosphoethanolamine (pEtN) or 4-amino-l-arabinose on lipid A that results in decrease in the negative charge on the bacterial surface. Therefore, electrostatic interaction between polycationic colistin and lipopolysaccharide (LPS) is halted. It has been reported that these modifications on the bacterial surface occur due to overexpression of chromosomally mediated two-component system genes (PmrAB and PhoPQ) and mutation in lipid A biosynthesis genes that result in loss of the ability to produce lipid A and consequently LPS chain, thereafter recently identified variants of plasmid-borne genes (mcr-1 to mcr-10). It was hypothesized that mcr genes derived from intrinsically resistant environmental bacteria that carried chromosomal pmrC gene, a part of the pmrCAB operon, code three proteins viz. pEtN response regulator PmrA, sensor kinase protein PmrAB, and phosphotransferase PmrC. These plasmid-borne mcr genes become a serious concern as they assist in the dissemination of colistin resistance to other pathogenic bacteria. This review presents the progress of multiple strategies of colistin resistance mechanisms in bacteria, mainly focusing on surface changes of the outer membrane LPS structure and other resistance genetic determinants. New handier and versatile methods have been discussed for rapid detection of colistin resistance determinants and the latest approaches to revert colistin resistance that include the use of new drugs, drug combinations and inhibitors. Indeed, more investigations are required to identify the exact role of different colistin resistance determinants that will aid in developing new less toxic and potent drugs to treat bacterial infections. Therefore, colistin resistance should be considered a severe medical issue requiring multisectoral research with proper surveillance and suitable monitoring systems to report the dissemination rate of these resistant genes.

4.
J Water Health ; 19(4): 592-603, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34371496

RESUMO

Antimicrobial resistance is not restricted to clinics but also spreading fast in the aquatic environment. This study focused on the prevalence and diversity of extended-spectrum ß-lactamase (ESBL) genes among bacteria from lentic and effluent water in Delhi-NCR, India. Phenotypic screening of 436 morphologically distinct bacterial isolates collected from diverse sites revealed that 106 (∼24%) isolates were ESBL positive. Antibiotic profiling showed that 42, 60, 78 and 59% ESBL producing isolates collected from Ghazipur slaughterhouse, Lodhi garden pond, Hauz Khas lake and Jasola wastewater treatment plant, respectively, were multidrug-resistant (MDR). The multiple antibiotic resistance (MAR) index varied from 0.20 to 0.32 among selected locations. The prevalence of ESBL gene variants blaSHV, blaTEM and blaCTX-M were found to be 17.64, 35.29 and 64%, respectively. Furthermore, the analysis of obtained gene sequences showed three variants of blaCTX-M (15, 152 and 205) and two variants of blaTEM (TEM-1 and TEM-116) among ESBL producers. The co-existence of 2-3 gene variants was recorded among 48% ESBL positive isolates. New reports from this study include the blaCTX-M gene in Acinetobacter lwoffii, Enterobacter ludwigii, Exiguobacterium mexicanum and Aeromonas caviae. Furthermore, the identification of blaTEM and blaSHV in an environmental isolate of A. caviae is a new report from India.


Assuntos
Água , beta-Lactamases , Acinetobacter , Antibacterianos/farmacologia , Enterobacter , Índia , beta-Lactamases/genética
5.
Antibiotics (Basel) ; 9(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227950

RESUMO

Antibiotic resistance is one of the major current global health crises. Because of increasing contamination with antimicrobials, pesticides, and heavy metals, the aquatic environment has become a hotspot for emergence, maintenance, and dissemination of antibiotic and heavy metal resistance genes among bacteria. The aim of the present study was to determine the co-resistance to quinolones, ampicillin, and heavy metals among the bacterial isolates harboring extended-spectrum ß-lactamases (ESBLs) genes. Among 73 bacterial strains isolated from a highly polluted stretch of the Yamuna River in Delhi, those carrying blaCTX-M, blaTEM, or blaSHV genes were analyzed to detect the genetic determinants of resistance to quinolones, ampicillin, mercury, and arsenic. The plasmid-mediated quinolone resistance (PMQR) gene qnrS was found in 22 isolates; however, the qnrA, B, C, and qnrD genes could not be detected in any of the bacteria. Two variants of CMY, blaCMY-2 and blaCMY-42, were identified among eight and seven strains, respectively. Furthermore, merB, merP, merT, and arsC genes were detected in 40, 40, 44, and 24 bacterial strains, respectively. Co-transfer of different resistance genes was also investigated in a transconjugation experiment. Successful transconjugants had antibiotic and heavy metal resistance genes with similar tolerance toward antibiotics and heavy metals as did their donors. This study indicates that the aquatic environment is a major reservoir of bacteria harboring resistance genes to antibiotics and heavy metals and emphasizes the need to study the genetic basis of resistant microorganisms and their public health implications.

6.
Environ Sci Pollut Res Int ; 26(32): 33715-33717, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31625114

RESUMO

Increased use of colistin, a last resort drug due to failure of carbapenems, has possibly contributed in development and spread of resistance to colistin among Enterobacteriaceae. The colistin belongs to the family of polymyxins, cationic polypeptides, with broad-spectrum activity against Gram-negative bacteria. In this study, we obtained 253 non-duplicate bacterial isolates from sewage water in Delhi and phenotypically screened for colistin resistance. Of the 47 positive isolates, the colistin resistance gene mcr-1 was detected among 5 isolates. Based on 16S ribosomal RNA-based identification, bacterial isolates were found to be Escherichia coli, Aeromonas veronii, and Aeromonas dhakensis. Extended spectrum ß-lactamases (ESBL)-resistant determinants CTX-M and TEM were detected in all five mcr-1 positive isolates. On the basis of literature survey, this is the first report of mcr-1 gene from Aeromonas veronii and Aeromonas dhakensis worldwide. Furthermore, mcr-1 gene has not been reported earlier from sewage water in India. Antibiotic susceptibility test of all five isolates against 9 different classes of drugs revealed multidrug-resistant phenotype with high minimum inhibitory concentration values. In vitro transconjugation studies showed successful transfer of mcr-1 and other ESBL-resistant determinants. The occurrence of colistin resistance phenotype conferred by plasmid-based mcr-1 gene in the environment and an ever-increasing list of bacterial isolates is a cause of concern. A comprehensive survey of different water bodies and epidemiological studies are required to assess the risk of dissemination of resistance determinants.


Assuntos
Colistina/análise , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Antibacterianos/farmacologia , Carbapenêmicos , Enterobacteriaceae/genética , Escherichia coli/genética , Índia , Testes de Sensibilidade Microbiana , Plasmídeos/efeitos dos fármacos , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...